Problem A. 28

Let

$$
\mathrm{T}=\left(\begin{array}{cc}
1 & 1-i \\
1+i & 0
\end{array}\right) .
$$

(a) Verify that T is hermitian.
(b) Find its eigenvalues (note that they are real).
(c) Find and normalize the eigenvectors (note that they are orthogonal).
(d) Construct the unitary diagonalizing matrix S , and check explicitly that it diagonalizes T .
(e) Check that $\operatorname{det}(\mathrm{T})$ and $\operatorname{Tr}(\mathrm{T})$ are the same for T as they are for its diagonalized form.

Solution

Take the hermitian conjugate of T .

$$
\mathrm{T}^{\dagger}=\widetilde{\mathrm{T}}^{*}=\left(\begin{array}{cc}
1 & 1+i \\
1-i & 0
\end{array}\right)^{*}=\left(\begin{array}{cc}
1 & 1-i \\
1+i & 0
\end{array}\right)
$$

Since $\mathrm{T}^{\dagger}=\mathrm{T}, \mathrm{T}$ is hermitian. As a result, the eigenvalues of T are real, the eigenvectors associated with distinct eigenvalues are orthogonal, and the matrix T is diagonalizable. Solve the eigenvalue problem for T .

$$
\mathrm{Ta}=\lambda \mathrm{a}
$$

Bring λa to the left side and factor a.

$$
\begin{equation*}
(T-\lambda I) a=0 \tag{1}
\end{equation*}
$$

$a \neq 0$, so the matrix in parentheses must be singular, that is,

$$
\begin{gathered}
\operatorname{det}(\mathrm{T}-\lambda \mathbf{I})=0 \\
\left|\begin{array}{cc}
1-\lambda & 1-i \\
1+i & -\lambda
\end{array}\right|=0 .
\end{gathered}
$$

Write out the determinant and solve the equation for λ.

$$
\begin{gathered}
(1-\lambda)(-\lambda)-(1+i)(1-i)=0 \\
\lambda^{2}-\lambda-2=0 \\
(\lambda-2)(\lambda+1)=0 \\
\lambda=\{-1,2\}
\end{gathered}
$$

Let $\lambda_{-}=-1$ and $\lambda_{+}=2$.

To find the corresponding eigenvectors, plug λ_{-}and λ_{+}back into equation (1).

$$
\left.\left.\left.\begin{array}{cr}
\left(\mathbf{T}-\lambda_{-} \mathbf{I}\right) \mathrm{a}_{-}=0 & \left(\mathbf{T}-\lambda_{+} \mathbf{I}\right) \mathrm{a}_{+}=0 \\
\left.\begin{array}{cc}
2 & 1-i \\
1+i & 1
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0} & \left(\begin{array}{cc}
-1 & 1-i \\
1+i & -2
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0} \\
2 a_{1}+(1-i) a_{2}=0 \\
(1+i) a_{1}+a_{2}=0
\end{array}\right\}\right) \begin{array}{c}
-a_{1}+(1-i) a_{2}=0 \\
(1+i) a_{1}-2 a_{2}=0
\end{array}\right\}, ~ a_{1}=(1-i) a_{2}, ~ \begin{gathered}
a_{2}=-(1+i) a_{1} \\
\mathbf{a}_{-}=\binom{a_{1}}{a_{2}}=\binom{a_{1}}{-(1+i) a_{1}}
\end{gathered}
$$

The constants, a_{1} and a_{2}, are arbitrary mathematically due to the fact that the eigenvalue problem is homogeneous. But for the eigenvectors to be physically relevant, a_{1} and a_{2} need to be chosen so that the magnitude of each eigenvector is one. This is called normalization.

$$
\begin{array}{rr}
\left|a_{1}\right|^{2}+\left|-(1+i) a_{1}\right|^{2}=1 & \left|(1-i) a_{2}\right|^{2}+\left|a_{2}\right|^{2}=1 \\
a_{1}^{2}+(1+i)(1-i) a_{1}^{2}=1 & (1-i)(1+i) a_{2}^{2}+a_{2}^{2}=1 \\
3 a_{1}^{2}=1 & 3 a_{2}^{2}=1 \\
a_{1}= \pm \frac{1}{\sqrt{3}} & a_{2}= \pm \frac{1}{\sqrt{3}}
\end{array}
$$

Therefore, the normalized eigenvectors corresponding to $\lambda_{-}=-1$ and $\lambda_{+}=2$ are respectively

$$
a_{-}=\frac{1}{\sqrt{3}}\binom{-1}{1+i} \quad \text { and } \quad a_{+}=\frac{1}{\sqrt{3}}\binom{1-i}{1} .
$$

Observe that the eigenvectors are orthogonal.

$$
\begin{aligned}
a_{-}^{\dagger} a_{+} & =\frac{1}{\sqrt{3}}\left(\begin{array}{ll}
-1 & 1-i) \frac{1}{\sqrt{3}}\binom{1-i}{1} \\
& =\frac{1}{3}(0) \\
& =0
\end{array}\right. \text { (0) }
\end{aligned}
$$

In order to diagonalize T , let S^{-1} be the 2×2 matrix whose columns are the eigenvectors of T .

$$
S^{-1}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)
$$

Determine S, the similarity matrix, by finding the inverse of S^{-1}.

$$
\begin{aligned}
\left(\begin{array}{cc|cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} & 1 & 0 \\
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 & 1
\end{array}\right) & \sim\left(\begin{array}{cc|cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} & 1 & 0 \\
0 & \sqrt{3} & 1+i & 1
\end{array}\right) \\
& \sim\left(\begin{array}{cc|cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} & 1 & 0 \\
0 & 1 & \frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right) \\
& \sim\left(\begin{array}{cc|cc}
1 & i-1 & -\sqrt{3} & 0 \\
0 & 1 & \frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right) \\
& \sim\left(\begin{array}{cc|cc}
1 & 0 & -\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\
0 & 1 & \frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

Consequently,

$$
S=\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)
$$

Note that because the normalized eigenvectors were used for the columns of S^{-1}, this matrix is unitary, and S could have been found more conveniently by taking the hermitian conjugate of S^{-1}. Compute STS^{-1} and verify that T is diagonalizable.

$$
\begin{aligned}
\text { STS }^{-1} & =\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{cc}
1 & 1-i \\
1+i & 0
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}} \\
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{2-2 i}{\sqrt{3}} \\
-\frac{1+i}{\sqrt{3}} & \frac{2}{\sqrt{3}}
\end{array}\right) \\
& =\left(\begin{array}{rr}
-1 & 0 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

Calculate the determinant and trace of T .

$$
\begin{aligned}
\operatorname{det}(\mathbf{T}) & =\left|\begin{array}{cc}
1 & 1-i \\
1+i & 0
\end{array}\right|=(1)(0)-(1-i)(1+i)=-2 \\
\operatorname{Tr}(\mathbf{T}) & =\operatorname{Tr}\left(\begin{array}{cc}
1 & 1-i \\
1+i & 0
\end{array}\right)=1+0=1
\end{aligned}
$$

Calculate the determinant and trace of STS ${ }^{-1}$.

$$
\begin{aligned}
& \operatorname{det}\left(\mathrm{STS}^{-1}\right)=\left|\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right|=(-1)(2)-(0)(0)=-2 \\
& \operatorname{Tr}\left(\mathrm{STS}^{-1}\right)=\operatorname{Tr}\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right)=-1+2=1
\end{aligned}
$$

